fastread homefastrread library fastread menu

Math : Integeral formula

Tutorial by:      Date: 2016-04-15 21:29:17

❰ Previous Next ❱

1.$\displaystyle \int adx=ax$

 

 

2.$\displaystyle \int af(x)dx=a \displaystyle \int f(x)dx$

 

 

 

3.$\displaystyle \int \left( u \pm v \pm w \pm \cdots \right) dx =
\displaystyle \int udx \pm \displaystyle \int vdx \pm \displaystyle
\int wdx \pm \cdots $

 

 

 

4.$\displaystyle \int udv = uv - \displaystyle \int vdu$

 

 

 

 

5.$\displaystyle \int f(ax)dx = \displaystyle \frac{1}{a} \displaystyle
\int f(u)du$

 

 

 

 

6.$\displaystyle \int F\{f(x)\}dx = \displaystyle \int F(u) \displaystyle
\frac{dx}{du}du = \displaystyle \int \displaystyle
\frac{F(u)}{f'(x)}du$

 

 

 

 

7.$\displaystyle \int u^{n}du = \displaystyle \frac{u^{n+1}}{n+1}, n \neq -1$

 

 

8.$\begin{array}{lcl}
\displaystyle \int\displaystyle \frac{du}{u} & = & \ln u \mb...
...or} \ln (-u) \mbox{ if} u<0 \\
& = & \ln \left\vert u \right\vert
\end{array}$

 

 

 

 

9.$\displaystyle \int e^{u}du=e^{u}$

 

 

 

 

10.$\displaystyle \int a^{u}du = \int e^{u \ln a}du = \displaystyle \frac{e^{u \ln a}}{\ln a} = \displaystyle \frac{a^{u}}{\ln a} , a >0, a \neq 1$

 

 

 

 

11.$\displaystyle \int \sin u du = -\cos u$

 

 

 

 

12.$\displaystyle \int \cos u du = \sin u$

 

 

 

 

13.$\displaystyle \int \tan u du = \ln \sec u = -\ln \cos u$

 

 

 

 

14.$\displaystyle \int \cot u du = \ln \sin u$

 

 

 

 

15.$\displaystyle \int \sec u du = \ln (\sec u + \tan u) = \ln \tan \left( \displaystyle \frac{u}{2} + \displaystyle \frac{\pi}{4} \right)$

 

 

 

 

16.$\displaystyle \int \csc u du = \ln (\csc u - \cot u) = \ln \tan \displaystyle \frac{u}{2}$

 

 

 

 

17.$\displaystyle \int \sec ^{2} u du = \tan u$

 

 

 

 

18.$\displaystyle \int \csc ^{2} u du = -\cot u$

 

 

19.$\displaystyle \int \tan ^{2} u du = \tan u - u$

 

 

20.$\displaystyle \int \cot ^{2} u du = -\cot u - u $

 

 

21.$\displaystyle \int \sin ^{2} u du = \displaystyle \frac{u}{2} - \displaystyle \frac{\sin 2u}{4} = \displaystyle \frac{1}{2} (u-\sin u \cos u)$

 

 

22.$\displaystyle \int \cos ^{2} u du = \displaystyle \frac{u}{2} + \displaystyle \frac{\sin 2u}{4} = \displaystyle \frac{1}{2} (u+\sin u \cos u)$

 

 

23.$\displaystyle \int \sec u \tan u du = \sec u$

 

 

24.$\displaystyle \int \csc u \cot u du = -\csc u $

 

 

25.$\displaystyle \int \sinh u du = \cosh u$

 

 

26.$\displaystyle \int \cosh u du = \sinh u$

 

 

27.$\displaystyle \int \tanh u du = \ln \cosh u$

 

 

28.$\displaystyle \int \coth u du = \ln \sinh u$

 

 

29.$\displaystyle \int $sech $u du = \sin ^{-1}(\tanh u )$ or $2\tan ^{-1}e^{u}$

 

 

30.$\displaystyle \int $csch $ u du = \ln \tanh \displaystyle \frac{u}{2}$ or $-\coth ^{-1}e^{u}$

 

 

31.$\displaystyle \int $sech $^{2} u du = \tanh u $

 

 

32.$\displaystyle \int $csch 2 u du =-coth u

 

 

33.$\displaystyle \int\tanh ^{2} u du = u - \tanh u$

 

 

34.$\displaystyle \int $coth 2 u du = u -coth u

 

 

35.$\displaystyle \int\sinh ^{2} u du = \displaystyle \frac{\sinh 2u}{4} - \displaystyle \frac{u}{2} = \displaystyle \frac{1}{2}(\sinh u \cosh u- u)$

 

 

36.$\displaystyle \int\cosh ^{2} u du = \displaystyle \frac{\sinh 2u}{4} + \displaystyle \frac{u}{2} = \displaystyle \frac{1}{2}(\sinh u \cosh u+ u)$

 

 

37.$\displaystyle \int $sech $ u \tanh u du = - $sech u

 

 

38.$\displaystyle \int $csch ucoth u du = -csch u

 

 

39.$\displaystyle \int\displaystyle \frac{du}{u^{2}+a^{2}} = \displaystyle \frac{1}{a} \tan^{-1} \displaystyle \frac{u}{a}$

 

 

40.$\displaystyle \int\displaystyle \frac{du}{u^{2} - a^{2}}= \displaystyle \frac{1...
...n \left( \displaystyle \frac{u - a}{u+a} \right) = - \displaystyle \frac{1}{a} $coth $ ^{-1} \displaystyle \frac{u}{a} , u^{2}>a^{2}$

 

 

41.$\displaystyle \int\displaystyle \frac{du}{a^{2}-u^{2}}= \displaystyle \frac{1}{...
...= \displaystyle \frac{1}{a} \tanh ^{-1} \displaystyle \frac{u}{a} , u^{2}<a^{2}$

 

 

42.$\displaystyle \int\displaystyle \frac{du}{\sqrt{a^{2}-u^{2}}} = \sin ^{-1} \displaystyle \frac{u}{a}$

 

 

43.$\displaystyle \int\displaystyle \frac{du}{\sqrt{u^{2}+a^{2}}} = \ln \left( u+ \displaystyle\sqrt{u^{2} + a^{2}} \right)$ or $ \sinh ^{-1} \displaystyle \frac{u}{a}$

 

 

44.$\displaystyle \int\displaystyle \frac{du}{\sqrt{u^{2}-a^{2}}} = \ln \left( u + \displaystyle\sqrt{u^{2} - a^{2}} \right)$

 

 

45.$\displaystyle \int\displaystyle \frac{du}{u \sqrt{u^{2}-a^{2}}} = \displaystyle \frac{1}{a} \sec ^{-1} \left\vert \displaystyle \frac{u}{a} \right\vert$

 

 

46.$\displaystyle \int\displaystyle \frac{du}{u \sqrt{u^{2}+a^{2}}}=-\displaystyle \frac{1}{a} \ln \left( \displaystyle \frac{a+\sqrt{u^{2}+a^{2}}}{u} \right)$

 

 

47.$\displaystyle \int\displaystyle \frac{du}{u \sqrt{a^{2}-u^{2}}}=-\displaystyle \frac{1}{a} \ln \left( \displaystyle \frac{a+\sqrt{a^{2}-u^{2}}}{u} \right)$

 

 

48.$\displaystyle \int f^{(n)}gdx = f^{(n-1)}g - f^{(n-2)}g' + f^{(n-3)} g'' - \cdots (-1)^{n} \displaystyle \int fg^{(n)}dx$

 

❰ Previous Next ❱


Math

Submit Your Thought, Tutorial, Articls etc.

Submit Your Information India's Number one online promotion website